Tel: 55 5564 73 10

¿Qué son los agujeros negros?

Lo más importante
Publicado el 04 de Marzo 2022

¿Qué son los agujeros negros?

¿Qué son los agujeros negros?

1 02 min

Los agujeros negros son los restos fríos de antiguas estrellas, tan densas que ninguna partícula material, ni siquiera la luz, es capaz de escapar a su poderosa fuerza gravitatoria. Mientras muchas estrellas acaban convertidas en enanas blancas o estrellas de neutrones, los agujeros negros representan la última fase en la evolución de enormes estrellas que fueron al menos de 10 a 15 veces más grandes que nuestro sol.

 

Cuando las estrellas gigantes alcanzan el estadio final de sus vidas estallan en cataclismos conocidos como supernovas. Tal explosión dispersa la mayor parte de la estrella al vacío espacial pero quedan una gran cantidad de restos «fríos» en los que no se produce la fusión. 

 

En estrellas jóvenes, la fusión nuclear crea energía y una presión exterior constante que se encuentra en equilibrio con la fuerza de gravedad interior que produce la propia masa de la estrella. Sin embargo, en los restos inertes de una supernova no hay una fuerza que se resista a la gravedad, por lo que la estrella empieza a replegarse sobre sí misma.

Sin una fuerza que frene la gravedad, el emergente agujero negro encoje hasta un volumen cero, en cuyo punto pasa a ser infinitamente denso. Incluso la luz de dicha estrella es incapaz de escapar a su inmensa fuerza gravitatoria, que se ve atrapada en órbita, por lo que la oscura estrella se conoce con el nombre de agujero negro.

Los agujeros negros atraen la materia, e incluso la energía, hacia sí, pero no en mayor medida que otras estrellas u objetos cósmicos de masa similar. Esto significa que un agujero negro con la misma masa que la de nuestro sol, no «aspiraría» más objetos hacia sí que nuestro sol con su propia fuerza gravitatoria.

Los planetas, la luz y otra materia deben pasar cerca de un agujero negro para ser atraídos dentro de su radio de acción. Cuando alcanzan un punto sin retorno, se dice que han entrado en el horizonte de sucesos, un punto del que es imposible escapar porque requiere moverse a una velocidad superior a la de la luz.

Las primeras imágenes de agujeros negros de la historia salieron a la luz en 2019. Con un telescopio del tamaño del planeta Tierra, más de 200 científicos lograron capturar la sombra de un agujero negro, que quedó retratado por primera vez en la historia. 

Pequeños pero poderosos

Los agujeros negros tienen un tamaño pequeño. Un agujero de una masa solar de un millón, como el que se sospecha que se encuentra en el centro de algunas galaxias, tendría un radio de unos tres millones de kilómetros, es decir, sólo unas cuatro veces el tamaño de nuestro sol. Un agujero negro con una masa igual a la del sol tendría un radio de tres kilómetros.

Dado que son tan pequeños, distantes y oscuros, los agujeros negros no pueden ser observados de manera directa. A pesar de esto, los científicos han confirmado las sospechas largo tiempo mantenidas de su existencia. Esto se realiza normalmente midiendo la masa de una región del espacio y buscando zonas con una gran masa oscura.

Existen muchos agujeros negros en el seno de los sistemas binarios. Estos agujeros atraen continuamente masa de su estrella vecina, aumentando el agujero negro y encogiendo la otra estrella, hasta que el agujero negro se hace grande y la estrella compañera se desvanece por completo.

Pueden existir agujeros negros supermasivos en el centro de algunas galaxias, incluida nuestra Vía Láctea. Estos cuerpos inmensos pueden tener una masa de 10 a 100 mil millones de soles. Son parecidos a los agujeros negros más pequeños pero alcanzan tales dimensiones al haber mucha materia en el interior de la galaxia que pueden atraer. Los agujeros negros pueden acumular cantidades de materia ilimitadas; simplemente se convierten en cuerpos aún más densos a medida que aumenta su masa.

Los agujeros negros han capturado la imaginación del público y jugado un papel destacado en conceptos extremadamente teóricos como el de los agujeros de gusano. Estos «túneles» permitirían realizar viajes rápidos en el espacio y en el tiempo, pero no hay pruebas reales de su existencia.

En 2019, los astrónomos capturaron la primera imagen de un agujero negro utilizando el Telescopio de Horizonte de Eventos (EHT por sus siglas en inglés), en una colaboración internacional que conectó a ocho radiotelescopios terrestres bajo una sola antena del tamaño de la Tierra. En la imagen aparece como un círculo oscuro delimitado por un disco en órbita de materia caliente y brillante. El agujero negro supermasivo se encuentra en el corazón de una galaxia llamada M87, ubicada a unos 55 millones de años luz de distancia, y pesa más de 6 miles de millones de masas solares. Su horizonte de eventos se extiende tanto que podría abarcar buena parte de nuestro sistema solar más allá de los planetas.

 

Otro hito importante en el estudio de los agujeros negros se dio en 2015 cuando los científicos detectaron por primera vez las ondas gravitacionales, las mismas ondas del tejido del espacio-tiempo que un siglo antes había predicho Albert Einstein, en su teoría general de la relatividad. LIGO detectó las ondas de un evento ocurrido hace 1.300 millones de años, conocido como GW150914, en el que dos agujeros negros giraban entre sí, en espiral, mientras se fusionaban. Desde entonces y a través del estudio de las ondas gravitacionales, LIGO y otras instalaciones han observado numerosas fusiones de agujeros negros.

 

Estas son nuevas y emocionantes técnicas, sin embargo: los astrónomos han estudiado los agujeros negros durante décadas a través de los diversos espectros de luz que emiten. Aunque la luz no puede escapar del horizonte de eventos de un agujero negro, las enormes ondas gravitacionales en sus cercanías hacen que la materia cercana se caliente millones de grados y emita ondas de radio y rayos X. Parte de la materia que orbita aún más cerca del horizonte de eventos pueden ser expedida, formando chorros de partículas que se mueven cercanas a la velocidad de la luz emitiendo ondas de radio, rayos X y rayos gamma. Los chorros de materia de los agujeros negros supermasivos se pueden extender cientos de miles de años-luz.

 

Cómo surgieron los agujeros negros más grandes del universo

 

En la mitad del camino que separa las pequeñas constelaciones de Delphinus el Delfín y la pezuña trasera de Pegasus el caballo volador, un molinillo inmaculado se mueve por el espacio.

Durante miles de millones de años, los lanudos brazos espirales de la galaxia UCG 11700 han girado en paz sin ser perturbados por las colisiones y fusiones que han deformado otras galaxias.

Sin embargo, mientras la UCG 11700 gira armoniosamente en el espacio, algo monstruoso acecha en su centro.

En el corazón de esta hermosa rueda cósmica se encuentra uno de los objetos más misteriosos del universo: un agujero negro supermasivo.

Si bien la masa de los agujeros negros estándar equivale a alrededor de cuatro veces la de nuestro Sol, sus enormes parientes son millones y, en ocasiones, miles de millones de veces más masivos.

 

Los científicos creen que casi todas las grandes galaxias tienen un agujero negro supermasivo en su corazón, a pesar de que nadie sabe cómo llegaron allí.

Aquí es donde la galaxia UCG 11700 podría ser útil.

"Las galaxias ideales para mi estudio son las espirales más hermosas y perfectas que puedas imaginar", dice la investigadora junior de la Universidad de Oxford Becky Smethurst, quien estudia los agujeros negros supermasivos.

"Las galaxias más bonitas son las que podrían ayudarnos a resolver el misterio de cómo crecen estos agujeros negros", agrega.

 

Estudiar algo que por su naturaleza es tan denso que ni siquiera la luz puede escapar de su centro dificulta su aprendizaje.

Pero las nuevas técnicas que buscan los efectos que los agujeros negros supermasivos tienen en los objetos interestelares que los rodean —e incluso en las ondas que crean en el tejido del espacio y el tiempo— están dando nuevas pistas.

Cómo aparece un agujero negro

Hay un pequeño secreto sobre cuán convencional, si se le puede llamar así, es la forma en la que un agujero negro aparece y crece.

Una estrella moribunda se queda sin combustible, explota en una supernova, colapsa sobre sí misma y se vuelve tan densa que ni siquiera la luz puede escapar de su intensa gravedad.

La idea de los agujeros negros existe desde hace un siglo y ya la predijo la Teoría de la Relatividad General de Albert Einstein.

En la cultura popular, los agujeros negros son perfectamente oscuros y están infinitamente hambrientos.

Ellos atraviesan el universo absorbiendo todo lo que encuentran a su paso, haciéndose más grandes y voraces a medida que lo hacen.

Misterio resuelto, uno podría pensar: los agujeros negros supermasivos son simplemente los más hambrientos y los más antiguos de su tipo.

Sin embargo, los agujeros negros no están a la altura de su monstruosa reputación.

Son sorprendentemente ineficaces en la acreción (término científico para decir "absorber") del material circundante, incluso en un núcleo galáctico denso.

 

De hecho, las estrellas colapsadas crecen tan lentamente que no podrían volverse supermasivas simplemente absorbiendo material nuevo.

"Supongamos que las primeras estrellas formaron agujeros negros alrededor de 200 millones de años después del Big Bang", dice Smethurst.

"Después de que colapsaron, tienes alrededor de 13.500 millones de años para hacer crecer tu agujero negro a miles de millones de veces la masa del Sol. Es un tiempo demasiado corto para hacerlo tan grande solo con la absorción de material", agrega.

Aún más desconcertante es saber que los agujeros negros supermasivos ya existían cuando el universo estaba todavía en su relativa infancia.

Los cuásares lejanos, algunos de los objetos más brillantes del cielo nocturno, son en realidad antiguos agujeros negros supermasivos que han incendiado los núcleos de galaxias moribundas.

Algunos de estos gigantes han estado presentes al menos desde que el universo tenía apenas 670 millones de años, en un momento en que se estaban formando algunas de las galaxias más antiguas conocidas.

La realidad sobre estos motores energéticos

Mientras que el corazón de un agujero negro sigue siendo desconocido para los observadores externos, los agujeros negros supermasivos pueden brillar más intensamente que una galaxia entera de estrellas, e incluso pueden producir "eructos" de radiación ultravioleta a medida que consumen material a su alrededor.

 

Los agujeros negros tienen un límite esférico conocido como "horizonte de eventos". Dentro de esta esfera, la luz, la energía y la materia están atrapadas ineludiblemente.

El espacio y el tiempo se pliegan sobre sí mismos y las leyes físicas que describen cómo funciona la mayor parte de nuestro universo se rompen.

Pero, justo fuera del horizonte de eventos, un agujero negro giratorio puede convertir el material cercano en un disco giratorio sobrecalentado.

Alcanzando temperaturas superiores a los 10 millones de grados centígrados, el disco de acreción en un cuásar libera una radiación cegadoramente brillante en todo el espectro electromagnético.

"Los agujeros negros son los motores más eficaces y eficientes del universo", dice Marta Volonteri, investigadora de agujeros negros en el Institut d'Astrophysique de Paris.

"Transforman la masa en energía con una eficiencia de hasta un 40%. Si piensas en cualquier cosa que nosotros quemamos con carbono o energía química o, incluso, en lo que sucede en las estrellas, es solo una pequeña fracción de lo que produce un agujero negro".

Los agujeros negros supermasivos interesan a los científicos por algo más que su eficiencia energética. Su formación y evolución están claramente conectadas con el desarrollo de las galaxias y con el tema aún mayor de la historia y estructura de todo nuestro universo.

Resolver el misterio de estos gigantes cósmicos representaría un paso significativo en el esfuerzo continuo de los científicos por comprender por qué las cosas son como son.





DICLAB
Distribuidores de Instrumentos para uso Científico y Materiales para Laboratorio, A.C.
Zacatecas 206 Despachos 400, 401 y 402
Colonia Roma, Delegación Cuauhtémoc, C.P. 06700, CDMX
(55) 5564 73 10
(55) 5574 02 79
Esta dirección de correo electrónico está siendo protegida contra los robots de spam. Necesita tener JavaScript habilitado para poder verlo.